

Simple Guide to Using GNU AutoTools

by Travis Parker and R. Paul Ritchey

ARL-CR-0681 October 2011

prepared by:

ICF Jacob and Sundstrom
401 E. Pratt Street, Suite 2214

Baltimore, MD 21202-3003

under contract

W911QX-07-F-0023

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005

ARL-CR-0681 October 2011

Simple Guide to Using GNU AutoTools

Travis Parker and R. Paul Ritchey
Computational and Information Sciences Directorate, ARL

prepared by:

ICF Jacob and Sundstrom
401 E. Pratt Street, Suite 2214

Baltimore, MD 21202-3003

under contract

W911QX-07-F-0023

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

October 2011
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 2009 to August 2010
4. TITLE AND SUBTITLE

Simple Guide to Using GNU AutoTools
5a. CONTRACT NUMBER

W911QX-07-F-0023
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Travis Parker and R. Paul Ritchey*
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICF Jacob and Sundstrom
401 E. Pratt Street, Suite 2214
Baltimore, MD 21202-3003

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-CR-0681

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIN-D
Aberdeen Proving Ground, MD 21005

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

*ICF Jacob and Sundstrom

14. ABSTRACT

While working on porting a C based project to use the GNU AutoTools for configuration and compilation we discovered that
the guides available online were either outdated or not clear enough for someone unfamiliar with AutoTools. After
successfully adding AutoTools to that project and many others, we thought other programmers may benefit from what we
learned and the basic starter files that we created that make starting a new project from scratch or adding AutoTools to an
existing project a snap. This report is not intended to be an in depth guide to all of the possible features and capabilities
AutoTools provides. It is intended to provide the information and basic AutoTool configuration files needed for a typical
project.

15. SUBJECT TERMS

GNU AutoTools, software development, compiling

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF ABSTRACT

UU

18. NUMBER
OF PAGES

24

19a. NAME OF RESPONSIBLE PERSON

Chuck Smith
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(410) 278-6235
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

1. What are GNU AutoTools? 1

2. Directory Structure and AutoTool Files 1

3. Sample Project: Simple_Project 7

4. Sample Project: Simple_Project2 7

5. Sample Project: Simple_Project3 8

6. Conclusion 9

Appendix A. Source Code Listings – Simple Project 11

Appendix B. Source Code Listings – Simple Project 2 15

Appendix C. Source Code Listings – Simple Project 3 17

Distribution List 18

iv

INTENTIONALLY LEFT BLANK.

1

1. What are GNU AutoTools?

GNU AutoTools is a set of tools (AutoMake, AutoConf, libtool, etc.) used to automate the build
process for software projects. Most Linux distributions come with some or all of the tools
already installed, and if you’ve downloaded and built an open source project from source code
you’ve used the tools without realizing it when you installed it (‘./configure ; make ; make
install’). In addition to automating the build process, the tools allow you to define configuration
items that can be dynamically enabled or disabled during compilation and make your project
more easily transported between distributions by allowing it to automatically locate the libraries
required by your code. 1

For most distributions you can easily determine if the AutoTools are installed by either using the
GUI package manager provided by your distribution and searching for ‘auto’ or using a
command line utility. For example, from the command line of an RPM based distribution, you
can easily determine if the AutoTools is installed by issuing the following command and
reviewing the output:

rpm -qa | grep auto

automake-x.x.x-x.x

autoconf-x.x-x

...

In the above sample output, both automake and autoconf are installed. If they weren’t, you
would use the mechanism provided by your distribution (GUI package manager or command
line) to install them and their required dependencies. Follow the same steps to see if libtool is
installed if your project builds shared libraries.2

2. Directory Structure and AutoTool Files

The directory structure we chose for our projects consists of the main project directory and two
subdirectories. The two subdirectories contain the source code files (*.c, *.cpp) in one directory
and the include files (*.h) in the other. For some of our projects, where the source code is broken
up into multiple directories (such as those including internal libraries), keeping the include files
in a separate, shared directory has allowed us to use the same base AutoTool configuration files
for numerous projects with very few changes beyond the normal changes needed to customize
them for a specific project.

1GNU Build System: http://en.wikipedia.org/wiki/GNU_build_system
2Manpage of rpm(8): http://linux.die.net/man/8/rpm

2

simple_project

|-- include

`-- src

Basic directory structure of a project.

Once the directory structure is created, you need to populate it with a specific set of files. The
listing below shows each directory with the basic files that are needed (including source code) by
AutoTools. The files will be described later, including a review of their contents and what needs
to be changed to customize them for each new project.

simple_project

|-- AUTHORS

|-- ChangeLog

|-- Makefile.am

|-- NEWS

|-- README

|-- autogen.sh

|-- configure.ac

|-- include

| `-- simple_project.h

`-- src

 |-- Makefile.am

 `-- simple_project.c

The directories populated with the basic files.

The Authors, ChangeLog, NEWS and REAME files are simple text files. Initially you can
create empty files using the touch command (‘touch AUTHORS ChangeLog NEWS
README’) and then keep them updated as appropriate as work on your project progresses. If
you project is for internal use and you have no plans on using them you will still need to create
them – otherwise the automake command will display an error message about their absence.

Note: Complete listings of the files for the AutoTools configuration files and scripts
discussed in this document can be found in the Appendices. Snippets of these files are
provided throughout the document for easy reference while reading the text.

The autogen.sh file contains a very simple but important shell script that executes three of
the autotool commands to dynamically build the configure script and input files it needs
using the configuration files you create. It’s very important to remember to re-run this script
after you make a change to any of the AutoTool configuration files. If you forget to run it
after making a change, the configure script and its output will not be updated with your latest
changes. It’s also been our experience that this script should be run again when moving between
different distributions because they may not have the same version of AutoTools installed. After
the script is executed, you will see several new files created throughout your directories. These
files can be ignored by you as they are automatically generated and do not contain anything that
should be altered; they will be overwritten the next time you run the autogen.sh script. If a

3

change to one of the files is necessary, you need to make the change in the appropriate file listed
above and re-run the autogen.sh script. This script should be included in the top level of
your source code directory and can be reused without any changes.

The Makefile.am file, located in your project’s root directory, is one of the simpler
configuration files you’ll need to update for each of your projects. The entry SUBDIRS is the
only configuration entry that you will need to change and should contain a space delimited list of
all of the subdirectories containing source code that requires compilation. If there is more than
one directory, they should appear in the same order in which they need to be compiled because
of dependencies. In the example provided below, there is only one source code directory.3

Macro file for use with GNU AutoTools for generating config files and Makefiles.

This file was manually created based on information found via Google and the

GNU documentation. Although it works for the source code it's included with,

it may not be 100% correct so additional research/tweaking may be needed.

AUTOMAKE_OPTIONS is used to pass options to 'automake'. In this case

we're telling it to use the GNU tool chain.

AUTOMAKE_OPTIONS = gnu

SUBDIRS takes a space delimited list of _all_ the subdirectories that

contain source code.

SUBDIRS = src

File Listing: Makefile.am

The configure.ac file, also located in your project’s base directory, is significantly longer
than Makefile.am and has several lines that require customization for your projects. The first
entry requiring a change is AC_INIT which contains two entries. The first entry is the name of
your project which will be used to name the final binary when the compilation process has been
completed. The second entry is the version number. In the example below, a binary named
simple_project will be built and the version is 1.0.

AC_INIT takes two parameters, the package name and a version number.

AC_INIT([simple_project], [1.0])

The AC_INIT parameter is used to specify the binary name and version.

The next parameter in the file that needs to be altered is the AC_CONFIG_SRCDIR. It requires
one parameter, the name of a single source code file in your project and the path where it’s
located. When updating it for our projects, we usually specify the file containing the main()
function in our C/C++ code.

AC_CONFIG_SRCDIR takes one parameter, the path and filename

for one of the source code files.

AC_CONFIG_SRCDIR([src/simple_project.c])

The AC_CONFIG_SRCDIR needs to point to a source code file and the path to it.

3GNU Automake: http://www.gnu.org/software/hello/manual/automake/index.html

4

Skipping to the bottom of the configure.ac file, you’ll see the AC_OUTPUT parameter.
Depending on your project’s requirements, this may be the last item you need to update. In order
for AutoTools to know where to build Makefiles, you must specify them using a space
delimited list in the AC_OUTPUT parameter. The root directory of your project must be included
in the list and this is accomplished by simply including ‘Makefile’ in the list. The rest of the
entries should include the word Makefile pre-pended with the directory. In the example
below, the root directory of our project is included along with one subdirectory, src, which is
the only directory containing source code that needs to be compiled.4

AC_OUTPUT takes a space delimited list of where the Makefiles are to be created.

You need to pass all directories where there is source code (including the base

directory containing all of the source code (which won't need a path pre-pended

to the 'Makefile' keyword).

AC_OUTPUT(Makefile src/Makefile)

You must supply a list of directories where all of the source code can be found.

Some projects require additional libraries, or allow you to enable/disable features using the
configure script. By adding one additional line per library/optional feature to the
configure.ac script, the proper checks and tests will be performed up front instead of during
compilation. It will also display a more user friendly message for the user, making it easier for
them to resolve the issue. This is implemented using a macro named REQUIRE_LIB which is
located approximately halfway into the configure.ac file.

The macro takes four parameters. The first parameter is the name of the library as it exists in the
file system without any extensions. The sample line below is for the libpcap library. The actual
name of the file is libpcap.so, so the first parameter should simply be ‘libpcap’. The
second parameter will be appended to the text ‘--with-<second_parameter>’ which is
displayed in the configure script’s help output and is used as an option to enable/disable a feature
or provide the path to the library if the configure script is unable to find it automatically. The
third parameter is the name of a function included in the library. During the configuration phase,
AutoTools will create a test source code file which includes a call to the supplied function and
AutoTools will attempt to compile it to ensure the library is installed and is accessible. The
fourth and final parameter is the text you want displayed if the library is missing, inaccessible or
the user views the help documentation the configure script provides (‘./configure --
help’).

REQUIRE_LIB(libpcap,pcap,pcap_dump_open,[Libpcap packet capture library])

A sample entry for a library that is required by a project.

 --with-libpcap=<path> Location where Libpcap packet capture library is

 Installed

This is how the text included will be used in the configure script’s help output.

4GNU Autoconf : http://www.gnu.org/software/autoconf/manual/index.html

5

It is also possible to use the REQUIRE_LIB macro to enable or disable features in your code.
To do this, wrap the call to REQUIRE_LIB in an ‘if’ statement testing for the parameter the
REQUIRE_LIB will look for. In this example, the user can enable support for accessing Oracle
databases by passing a ‘--with-liboci’ to the configure script. Simply replace the
‘liboci’ with the name of the library (first parameter passed to REQUIRE_LIB) you want to
allow as an option. An AutoTools configure script will set pre-compilation defines
(‘#define’) based on enabled features, which can be used to IFDEF sections of code.

Continuing with the example, if ‘--with-liboci’ is provided during configuration,
‘LIBSQLPLUS’ will be defined from the combination of ‘LIB’ plus the uppercase version of
the second parameter passed to REQUIRE_LIB.

if test "$with_liboci"; then

 REQUIRE_LIB(liboci,sqlplus,OCIEnvCreate,[Oracle OCI client libraries provided with

Instant Client])

fi

Wrapping REQUIRE_LIB in an ‘if’ statement allows
you to use it to dynamically enable or disable features.

Now that the files in the base directory of your project have been covered, the next file that needs
to be created are the Makefile.in which needs to exist in each of the source code
subdirectories listed in the SUBDIRS parameter in the Makefile.am file. In the simple
example we’ve been using so far, the only subdirectory requiring a Makefile.am file is the
src directory.

The Makefile.am contains two entries that you will need to update for each project, while the
rest are optional. The first parameter, bin_PROGRAMS, defines the name of the binary that
should be built at the completion of the compilation process. In the example below, the binary
will be named ‘simple_project’. The name of the binary will also be pre-pended to other
parameters in the file as you will soon see.

bin_PROGRAMS is used to define the binary that's to be built from the

source code. The binary name will also be used in variable names to

pass values that will only apply to this binary.

bin_PROGRAMS = simple_project

bin_PROGRAMS should be set to the name of the binary that will be built.

The second parameter that you will need to change is the <binary_name>_SOURCES
parameter. You must set the beginning portion of the name of this parameter to the name you
used for the binary in the bin_PROGRAMS parameter. In our example the parameter’s name
becomes simple_project_SOURCES. The space delimited list following this parameter is a
complete list of the source code files that need to be compiled. Order can be important
depending on the dependencies between the code files, so if you change the order don’t forget to
re-run the autogen.sh script.

6

<binary_name>_SOURCES takes a space delimited list of the source code files

that need to be compiled/linked to build the binary.

simple_project_SOURCES = simple_project.c

For this parameter you need to update the name with the name of the binary being built.

The rest of the parameters listed in the example below will need the name of the binary pre-
pended as well. They are optional and allow you to provide additional parameters at link time,
such as search paths and additional libraries that need to be linked in. This capability is
particularly useful when your project contains its own libraries.

<binary_name>_LDADD is used to pass extra parameters at link time, such as

libraries that need to be linked in.

simple_project3_LDADD = -lfoo

<binary_name>_LDFLAGS is used to pass extra parameters at compilation time,

such as the paths to libraries that are needed that are not in the default

paths.

If the user supplies a directory where libpcap is installed, the contents

of the variable setup in configire.in will be substituted below so the

library file will be found.

simple_project3_LDFLAGS = -L../libfoo

If they are used, remember to update the names of these parameters.

The final parameter in the Makefile.am file is the INCLUDE parameter. This parameter may
not need to be updated for different projects. For our projects we centralize all of the header files
(‘.h’) in the ‘include’ subdirectory of the project, so for us, this parameter never needs to be
updated between projects or between multiple source code directories within the same project.

The INCLUDES macro allows us to tell the tools where needed header files are

located if they aren't in the default paths. In this case it's a subdirectory

in the source code directory where all the header files are centrally located.

If the user supplies a directory where a library is installed, the contents

of the variable setup in configure.in will be substituted below so the

header file will be found.

INCLUDES = -I../include

The parameter allows you to specify where in your project the include files can be found.

Once you have reached this point, you should have all of the necessary configuration files
AutoTools needs to generate the final versions. Execute the autogen.sh script to update the
configuration files generated by AutoTools that are based upon the ones you created. If the
autogen.sh script executed without any errors you will be able to ‘./configure ; make
; make install’ to configure, compile and install your project. If autogen.sh does not
execute without errors, you will need to make appropriate adjustments to your configuration files
and then re-execute autogen.sh.

7

3. Sample Project: Simple_Project

Included in the compressed archive is a project titled ‘simple_project’. This example is a very
simple project and has been used as the basis for the code examples in this paper. It consists of
one include file and one source code file. This project is designed to be the template for a project
made up of one or more code files and requiring no libraries (internal or provided by the
operating system). Complete listings for the files described previously appear at the end of this
document for reference.

4. Sample Project: Simple_Project2

Simple_project2 is based on the first sample project, with the addition of an internal library that
gets statically compiled in. The internal library is contained in the ‘libfoo’ subdirectory of the
source code, requiring slight changes to the Makefile.am and configure.am in the
project’s base directory and the Makefile.am file in the ‘src’ subdirectory. The primary
changes of interest are to the ‘<binary_name>_LDADD’ and
‘<binary_name>_LDFLAGS’ parameters in the src directory which contain the flags/paths
for where the library can be found.

Changes are also required in the Makefile.am file located in the libfoo subdirectory. The
lib_LIBRARIES parameter instructs the AutoTools that the type of library to be built is not a
shared library, and the parameter value is the name of the library.

The lib_LIBRARIES macro tells the autotools the name and type of library we

want to build - in this case _not_ a shared library. A shared library

would end with '.la' instead of '.a'.

lib_LIBRARIES = libfoo.a

Including this parameter informs AutoTools it is to build a non-shared library.

The second change in the libfoo subdirectory’s Makefile.am file is the
‘<library_name>_<library_type>_SOURCES’ parameter. The name of this parameter
is used to specify both the name and type of library being build, while the value of the parameter
is a space delimited list of the source code that must be compiled to create the library. In the
sample project the library name is ‘libfoo’ which is a static library type (‘.a’) and consists of
one source code file (‘libfoo.c’).

This specially named variable contains a space delimited list of the source code
files that must be compiled in order to create the library. The variable name
is in the format:
<library_name>_<library_type>_SOURCES
Where:
<library_name> = the name of the library specified in lib_LIBRARIES

8

<library_type> = either 'a' for non-shared library or 'la' for shared.
libfoo_a_SOURCES = libfoo.c

You must also add a parameter that includes the name/type of library and the list of code files.

5. Sample Project: Simple_Project3

Simple_project3 is similar to simple_project2, but instead of linking the project’s included
library in statically, it is linked in as a shared library. To accomplish this, several changes to the
AutoTool configuration files in the project needed to be made.

The first unique change is to the configure.ac file located in the base directory of the
project. Near the top of the file you will see the addition of the AC_PROG_LIBTOOL
parameter. Including this parameter allows you to build shared libraries.

AC_CONFIG_SRCDIR takes one parameter, the path and filename

for one of the source code files.

AC_CONFIG_SRCDIR([src/simple_project3.c])

AM_INIT_AUTOMAKE

AC_PROG_LIBTOOL

For shared libraries you must add the AC_PROG_LIBTOOL option to configure.ac.

The next changes that are unique to building a shared library is to the Makefile.am file in the
library’s subdirectory. You must use the ‘lib_LTLIBRARIES’ parameter to build a shared
library whose value is set to the name of the library.

The lib_LIBRARIES macro tells the autotools the name and type of library we

want to build - in this case a shared library. A shared library

ends with '.la' instead of '.a' which is for a non-shared (static) library.

lib_LTLIBRARIES = libfoo.la

To build a shared library, use the lib_LTLIBRARIES option in the Makefile.am file.

The next change to the Makefile.am is the parameter specifying the space delimited list of
source code files that make up the shared library. The name of the parameter follows the format
‘<library_name>_<library_type>_SOURCES’, which in this case
<library_type> is specified as ‘la’ for shared library.

This specially named variable contains a space delimited list of the source code

files that must be compiled in order to create the library. The variable name

is in the format:

<library_name>_<library_type>_SOURCES

Where:

<library_name> = the name of the library specified in lib_LIBRARIES

<library_type> = either 'a' for non-shared library or 'la' for shared.

libfoo_la_SOURCES = libfoo.c

Be sure to correctly name the _SOURCES parameter to build a shared library.

9

6. Conclusion

The GNU Autotools allow developers to use an automate the build process that is supported on a
variety of platforms. However, the GNU documentation for Autotools is complex as it must
cover all features and cases. In this paper we have presented a set of simplified instructions for
converting most projects to use GNU Autotools.

10

INTENTIONALLY LEFT BLANK.

11

Appendix A. Source Code Listings – Simple Project

This appendix contains a listing of the major files in the Simple Project’s directory. It is not an
exhaustive listing of all files that will appear, especially after the AutoTools utilities are
executed.

autogen.sh (Located in the project’s base directory.)
The autogen.sh script is generic and can be included in any project without any changes.
Remember to executed it after any changes are made to the project’s AutoTool configuration
files.
#! /bin/sh

This script is used to automate the process of running some of the autotools

against their input files (configure.in, Makefile.am) after _any_ of them have

been updated. The commands and parameters were taken based on a similar script

found via google and seeing the same commands issued in GNU autotool tutorials.

aclocal

automake --add-missing --force-missing

autoconf

Makefile.am (Located in the project’s base directory.)
Macro file for use with GNU AutoTools for generating config files and Makefiles.

This file was manually created based on information found via Google and the

GNU documentation. Although it works for the source code it's included with,

it may not be 100% correct so additional research/tweaking may be needed.

AUTOMAKE_OPTIONS is used to pass options to 'automake'. In this case

we're telling it to use the GNU tool chain.

AUTOMAKE_OPTIONS = gnu

SUBDIRS takes a space delimited list of _all_ the subdirectories that

contain source code.

SUBDIRS = src

configure.ac (Located in the project’s base directory.)
Macro file for use with GNU AutoTools for generating config files and Makefiles.

This file was manually created based on information found via Google and the

GNU documentation. Although it works for the source code it's included with,

it may not be 100% correct so additional research/tweaking may be needed.

AC_INIT takes two parameters, the package name and a version number.

AC_INIT([simple_project], [1.0])

AC_CONFIG_SRCDIR takes one parameter, the path and filename

for one of the source code files.

AC_CONFIG_SRCDIR([src/simple_project.c])

AM_INIT_AUTOMAKE

AC_PROG_CC

AC_PROG_RANLIB

CFLAGS=

LDFLAGS=

LIBS=

This is a reusable macro for providing --with-libfoo functionality.

12

REQUIRE_LIB(name,lib,testfn,description)

name = The complete name of the library file without the extension.

lib = The name of the library file without the 'lib' prefix and without the extension.

testfn = One function included in the library that can be used for a test compilation.

description = Human readable text to be displayed if the library can't be found or

if there's a problem during the test compilation.

AC_DEFUN([REQUIRE_LIB], [{

 AC_ARG_WITH([$1], AC_HELP_STRING([--with-$1=<path>],[Location where $4 is

installed]),[],[with_$1=default])

 AS_IF([test "x$with_$1" != xdefault],

 [

 LDFLAGS="$LDFLAGS -L${with_$1}/lib"

 CFLAGS="$CFLAGS -I${with_$1}/include"

])

 AC_CHECK_LIB($2,$3,[],

 [

 AC_MSG_ERROR([$4 was not found, try specifying --with-$1])

])

}])

The list of libraries required by the source code that are external to

our code.

#REQUIRE_LIB(libpcap,pcap,pcap_dump_open,[Libpcap packet capture library])

AC_OUTPUT takes a space delimited list of where the Makefiles are to be created.

You need to pass all directories where there is source code (including the base

directory containing all of the source code (which won't need a path pre-pended

to the 'Makefile' keyword).

AC_OUTPUT(Makefile src/Makefile)

src/Makefile.am
Macro file for use with GNU AutoTools for generating config files and Makefiles.

This file was manually created based on information found via Google and the

GNU documentation. Although it works for the source code it's included with,

it may not be 100% correct so additional research/tweaking may be needed.

bin_PROGRAMS is used to define the binary that's to be built from the

source code. The binary name will also be used in variable names to

pass values that will only apply to this binary.

bin_PROGRAMS = simple_project

Note: that the following names all start with the binary name defined in

bin_PROGRAMS.

<binary_name>_LDADD is used to pass extra parameters at link time, such as

libraries that need to be linked in.

simple_project_LDADD =

<binary_name>_LDFLAGS is used to pass extra parameters at compilation time,

such as the paths to libraries that are needed that are not in the default

paths.

If the user supplies a directory where libpcap is installed, the contents

of the variable setup in configire.in will be substituted below so the

library file will be found.

simple_project_LDFLAGS =

<binary_name>_SOURCES takes a space delimited list of the source code files

that need to be compiled/linked to build the binary.

simple_project_SOURCES = simple_project.c

The INCLUDES macro allows us to tell the tools where needed header files are

located if they aren't in the default paths. In this case it's a subdirectory

in the source code directory where all the header files are centrally located.

If the user supplies a directory where libpcap is installed, the contents

of the variable setup in configire.in will be substituted below so the

header file will be found.

13

INCLUDES = -I../include

include/simple_project.h

char global_foo[] = "Hello World!";

src/simple_project.c
#include <stdio.h>

#include <stdlib.h>

#include "simple_project.h"

int main() {

 printf("%s\n", global_foo);

 return 0;

}

14

INTENTIONALLY LEFT BLANK.

15

Appendix B. Source Code Listings – Simple Project 2

This appendix contains a listing of the major files in the Simple Project 2’s directory. It is not an
exhaustive listing of all files that will appear, especially after the AutoTools utilities are
executed. Several files (such as the base Makefile.am) are not included as the modifications
that are needed beyond original Simple Project are described earlier in the document.

include/simple_project2.h
#ifndef simple_project2_h_

#define simple_project2_h_

char global_foo[] = "Hello World!";

#endif

include/libfoo.h
#ifndef libfoo_h_

#define libfoo_h_

void display_stuff(char stuff[]);

#endif

libfoo/libfoo.c
#include <stdio.h>

#include <stdlib.h>

void display_stuff(char stuff[]) {

 printf("%s\n", stuff);

}

src/simple_project2.c
#include <stdio.h>

#include <stdlib.h>

#include "simple_project2.h"

#include "libfoo.h"

int main() {

 printf("%s\n", global_foo);

 display_stuff("I'm printed via a library call.");

 return 0;

}

16

INTENTIONALLY LEFT BLANK.

17

Appendix C. Source Code Listings – Simple Project 3

This appendix contains a listing of the major files in the Simple Project 3’s directory. It is not an
exhaustive listing of all files that will appear, especially after the AutoTools utilities are
executed. Several files (such as the base Makefile.am) are not included as the modifications
that are needed beyond original Simple Project are described earlier in the document.

autogen.sh (Located in the project’s base directory.)
Although the autogen.sh script is generic and can be included in any project without any
changes, an additional line needs to be added if the project builds a shared library. The listing
below includes the additional line. Remember to executed it after any changes are made to the
project’s AutoTool configuration files.
#! /bin/sh

This script is used to automate the process of running some of the autotools

against their input files (configure.in, Makefile.am) after _any_ of them have

been updated. The commands and parameters were taken based on a similar script

found via google and seeing the same commands issued in GNU autotool tutorials.

libtoolize --force

aclocal

automake --add-missing --force-missing

autoconf

include/simple_project3.h
#ifndef simple_project2_h_

#define simple_project2_h_

char global_foo[] = "Hello World!";

#endif

include/libfoo.h
#ifndef libfoo_h_

#define libfoo_h_

void display_stuff(char stuff[]);

#endif

libfoo/libfoo.c
#include <stdio.h>

#include <stdlib.h>

void display_stuff(char stuff[]) {

 printf("%s\n", stuff);

}

src/simple_project3.c
#include <stdio.h>

#include <stdlib.h>

#include "simple_project3.h"

#include "libfoo.h"

int main() {

 printf("%s\n", global_foo);

 display_stuff("I'm printed via a library call.");

 return 0;

}

18

NO. OF
COPIES ORGANIZATION

 1 ADMNSTR
 DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 US ARMY RSRCH LAB
 ATTN RDRL CIN D T PARKER
 BLDG 310E RM C53
 ABERDEEN PROVING GROUND MD 21005

 1 US ARMY RSRCH LAB
 ATTN RDRL CIN S P RITCHEY
 BLDG 310E RM C72
 ABERDEEN PROVING GROUND MD 21005

 4 US ARMY RSRCH LAB
 ATTN RDRL CIN S C SMITH
 BLDG 310E RM C39
 ABERDEEN PROVINIG GROUND MD 21005

 3 US ARMY RSRCH LAB
 ATTN IMNE ALC HRR MAIL & RECORDS MGMT
 ATTN RDRL CIO LL TECHL LIB
 ATTN RDRL CIO MT TECHL PUB
 ADELPHI MD 20783-1197

